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Abstract: Here, we present a compartmental (Susceptible – Exposed – Infected - Recovered) mathematical model. We discuss an 

epidemic depends on the value of the Basic Reproduction Number (ℛ0). Mathematical models have been used to understand the 

dynamics of the disease. They have also been used as health policy tools to predict the effect of public health interventions on 

mitigating future epidemics or pandemics. In this study, we find out the effect of the introduction of some treatment at Exposed 

compartment in SEIR epidemiological model to study the effect and to control the disease and also the stability analysis. There 

are two types of equilibrium points.  First is the disease – free equilibrium point and second is endemic equilibrium point. The 

disease – free equilibrium (DFE) point is stable when ℛ0 ≤ 1, and the endemic equilibrium (EE) point is stable when ℛ0 > 1.   
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I. Introduction  

 

In eighteen century the study of epidemic modeling starts [1].The diseases spread due to virus or bacteria that somehow enter into 

the body and make the individual ill, which affect the development of the community and country. It motivates to study the 

illness. For controlling and eliminating the disease, we have to study several stages such as spreading of the diseases, treatment 

and effect of vaccines, etc. The first mathematical model that could be used to describe a disease was developed in the 20 th 

century by Kermack and McKendric [2]. The model is known as the Susceptible – Infectious – Recovered (SIR) model. The 

severity of the epidemic depends upon the value of the basic reproduction number (ℛ0). ℛ0 is defined as the average number of 

infections that one infective generates, in an entire susceptible population, during the time they are infectious. If ℛ0 > 1, an 

epidemic will occur and if ℛ0 < 1, the outbreak will die out.  

Mathematical models are the useful tool for analyzing and checking the different hypothesis and about the spreading pattern of 

the diseases and then to provide useful control and prevention measures. The basic procedure in modeling the spreading of 

disease by using the compartmental model. There are some studies in which the mathematical model is used on epidemic diseases 

[3, 4, 5, 6]. Some study on SEIR model is also done previously [7, 8, 9, 10, 11].  

 

II. THE MATHEMATICAL MODEL 

 

The SEIR model is developed by divided into s, e, i and r compartments. The following diagram shows the transmission 

dynamics -  
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The notations we use are –  

s (t) – susceptible populations, 

e (t) – exposed populations, 

i (t) -  infected populations 

r (t) – recovered populations 

𝛽 – rate with which susceptible populations goes to the exposed compartment, 

𝛼 – rate with which exposed population goes to the  infected compartment, 

𝛾 – rate with which the infected populations goes to recovered compartment, 

  𝜆 – rate with which exposed population gets some treatment and again becomes susceptible, 

  b – birth and immigration rate, 

  𝜇 – leaving rate (natural death and emigrants rate), 

  𝜇1 – rate with which infected population dies due to disease.  

 

The Mathematical Model – 

 

Mathematically, it can be written as the system of first order ODE as follows –   

𝑑𝑠

𝑑𝑡
 = 𝑏N − 𝜇s – 

𝛽si

𝑁
 + 𝜆𝑒 

 
𝑑𝑒

𝑑𝑡
 = 

𝛽si

𝑁
 – (𝜆 + 𝜇 + 𝛼) e   

                                    
𝑑𝑖

𝑑𝑡
 = 𝛼e – (𝜇1 + 𝜇 + 𝛾) i 

 
𝑑𝑟

𝑑𝑡
 = 𝛾i – 𝜇r 

 

Now, putting NS for s , NE for e, NI for i and NR for r, where S, E, I and R are the proportion of susceptible,  exposed, infectious 

and recovered proportion given by the following equations -  

 

𝑑𝑆

𝑑𝑡
 = 𝑏 − 𝜇S – 𝛽SI + 𝜆𝐸 

 
𝑑𝐸

𝑑𝑡
 = 𝛽SI – (𝜆 + 𝜇 + 𝛼) E  

                                   ……….. (1) 
𝑑𝐼

𝑑𝑡
 = 𝛼E – (𝜇1 + 𝜇 + 𝛾) I 

 
𝑑𝑅

𝑑𝑡
 = 𝛾I – 𝜇R 

 

Then, 
𝑑𝑁

𝑑𝑡
 =  

𝑑𝑆

𝑑𝑡
 + 

𝑑𝐸

𝑑𝑡
 + 

𝑑𝐼

𝑑𝑡
 + 

𝑑𝑅

𝑑𝑡
 

=( 𝑏 − 𝜇S – 𝛽SI + 𝜆𝐸) + (𝛽SI – (𝜆 + 𝜇 + 𝛼) E) + (𝛼E – (𝜇1 + 𝜇 + 𝛾) I) + (𝛾I – 𝜇R) 

= 𝑏 –  𝜇(S +E + I + R)  − 𝜇1𝐼 

= 𝑏 –  𝜇𝑁 −  𝜇1𝐼 where N = S + E + I + R  

 

  So, the system has variable population size. 
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III.  Equilibrium point –  

 

Here we obtain DFE and EE Points. For this, we equate the system of equations to zero i.e. 
𝑑𝑆

𝑑𝑡
 = 

𝑑𝐸

𝑑𝑡
 = 

𝑑𝐼

𝑑𝑡
 = 

𝑑𝑅

𝑑𝑡
 = 0. 

 

i.e. 𝑏 − 𝜇S – 𝛽SI + 𝜆𝐸= 0……......(2) 

𝛽SI – (𝜆 + 𝜇 + 𝛼) E = 0……….…(3) 

𝛼E – (𝜇1 + 𝜇 + 𝛾) I = 0…………..(4) 

𝛾I – 𝜇R = 0………….………….....(5) 

 

IV. DFE point – 

 

From equation (2), 𝑏 − 𝜇S – 𝛽SI + 𝜆𝐸= 0 

⇒ b + 𝜆𝐸= S (𝛽I + 𝜇) ⇒ S = 
b + 𝜆𝐸

𝛽I + 𝜇
  

But at the disease – free state,  

 𝛽 = 0 ⇒ S = 
b + 𝜆𝐸

 𝜇
 

From equation (3), 𝛽SI = (𝜆 + 𝜇 + 𝛼) E = 0 ⇒ E =  
𝛽SI

(𝜆+𝜇+𝛼)
 

Since 𝛽 = 0 ⇒ E = 0. 

From equation (4), 𝛼E = (𝜇1 + 𝜇 + 𝛾)I ⇒ I = 
𝛼E

(𝜇1+𝜇+𝛾)
 

Since, E = 0 ⇒ I = 0. 

From equation (5), 𝛾I = 𝜇R ⇒ R = 
𝛾I

𝜇
 

Since, I = 0 ⇒ R = 0. 

Thus, we have the DFE Point is 𝐸0 = (
b + 𝜆𝐸

 𝜇
, 0,0,0),                                                                                                                                        

but here E = 0 So, 𝐸0 = (𝑆′, 𝐸′, 𝐼′, 𝑅′) = (
b 

 𝜇
, 0,0,0). 

 

 

 

V. EE point – 

 

It indicates that the disease or infection will persist in the system. Let EE is 𝐸∗∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗). 

Consider equations (3) and (4), we get, 

𝛽SI – (𝜆 + 𝜇 + 𝛼) E = 0 ⇒ 𝛽SI = (𝜆 + 𝜇 + 𝛼) E 

And 𝛼E – (𝜇1 + 𝜇 + 𝛾)I = 0 ⇒ (𝜇1 + 𝜇 + 𝛾)I = 𝛼E  

Dividing both the terms, we get, 
𝛽S

(𝜇1+𝜇+𝛾)
 = 

(𝜆+𝜇+𝛼)

𝛼
 ⇒ S = 

(𝜆+𝜇+𝛼)(𝜇1+𝜇+𝛾)

𝛼𝛽
 > 0. 

Similarly, adding equation (2) and (3), we get, 

𝑏 − 𝜇S – 𝛽SI + 𝜆𝐸 + 𝛽SI – (𝜆 + 𝜇 + 𝛼) E = 0  

⇒ 𝑏 − 𝜇S – (𝜇 + 𝛼) E = 0 

⇒ S = 
𝑏 − (𝜇+𝛼) E

𝜇
 ………………………………………………….……. (6) 
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Again from equation (4), 𝛼E = (𝜇1 + 𝜇 + 𝛾) I ⇒ I = 
𝛼E

(𝜇1+𝜇+𝛾)
………….. (7) 

From equation (3), we have, 𝛽SI = (𝜆 + 𝜇 + 𝛼) E …………….. (8) 

From equation (6) and (7), substituting the value of S & I in equation (8), we get, 

(𝜆 + 𝜇 + 𝛼) E = 𝛽 {
𝑏 − (𝜇+𝛼) E

𝜇
} {

𝛼E

(𝜇1+𝜇+𝛾)
} = 𝛽 {

𝑏𝛼E − 𝛼(𝜇+𝛼) E2

𝜇(𝜇1+𝜇+𝛾)
} 

⇒ E [
 − 𝛼𝛽(𝜇+𝛼) E

𝜇(𝜇1+𝜇+𝛾)
 +  

𝑏𝛼𝛽

𝜇(𝜇1+𝜇+𝛾)
− (𝜆 + 𝜇 + 𝛼)] = 0 

So, either E = 0 Or, 
 − 𝛼𝛽(𝜇+𝛼) E

𝜇(𝜇1+𝜇+𝛾)
 +  

𝑏𝛼𝛽

𝜇(𝜇1+𝜇+𝛾)
− (𝜆 + 𝜇 + 𝛼) 

⇒ 
 − 𝛼𝛽(𝜇+𝛼) E

𝜇(𝜇1+𝜇+𝛾)
 = (𝜆 + 𝜇 + 𝛼) − 

𝑏𝛼𝛽

𝜇(𝜇1+𝜇+𝛾)
 

⇒ E = 
𝑏

(𝜇+𝛼)
− 

𝜇(𝜇1+𝜇+𝛾)(𝜆+𝜇+𝛼)

𝛼𝛽(𝜇+𝛼)
  

Therefore, 𝐸∗ = 
𝑏

(𝜇+𝛼)
− 

𝜇(𝜇1+𝜇+𝛾)(𝜆+𝜇+𝛼)

𝛼𝛽(𝜇+𝛼)
 = 

𝑏

(𝜇+𝛼)
 [1 −

𝜇(𝜇1+𝜇+𝛾)(𝜆+𝜇+𝛼)

𝛼𝛽b
] 

Let, 𝑅0 = 
𝛼𝛽b

𝜇(𝜇1+𝜇+𝛾)(𝜆+𝜇+𝛼)
  

So, we have, 𝐸∗ = 
𝑏

(𝜇+𝛼)
 [1 −

1

𝑅0
] …………………..………….……. (9) 

Also, S = 𝑆∗ = 
(𝜆+𝜇+𝛼)(𝜇+𝛾)

𝛼𝛽
 =  

𝑏

𝜇𝑅0
  

Now consider I, from equation (7), I = 
𝛼E

(𝜇1+𝜇+𝛾)
 

Substituting 𝐸∗ for E, we get,  

𝐼∗ = 
𝛼𝑏

(𝜇1+𝜇+𝛾)(𝜇+𝛼)
 [1 −

1

𝑅0
]…………………………………………..(10) 

And from equation (5), we get, 

𝛾I = 𝜇R ⇒ R = 
𝛾I

𝜇
  

Substituting the value of 𝐼∗ for I in above, we get, 𝑅∗ = 
𝛾𝛼𝑏

𝜇(𝜇1+𝜇+𝛾)(𝜇+𝛼)
[1 −

1

𝑅0
] ………………..(11) 

So, we have,  𝑆∗, 𝐸∗, 𝐼∗ 𝑎𝑛𝑑 𝑅∗ all are positive, 𝐸∗∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) > 0 if 1 −
1

𝑅0
> 0 ⇒ 1 > 

1

𝑅0
 ⇒ 𝑅0 > 1.  

Here, 𝐸∗∗ represents an endemic state. 

 

 

 

VI. Stability of the equilibrium points – 

 

Let us suppose that, k =  𝑏 − 𝜇S – 𝛽SI + 𝜆𝐸 

𝑙 = 𝛽SI – (𝜆 + 𝜇 + 𝛼) E  

m = 𝛼E – (𝜇1 + 𝜇 + 𝛾) I  

n = 𝛾I – 𝜇R  

Then, the Jacobian matrix is, J = 

[
 
 
 
 
 
 

𝜕𝑘

𝜕𝑆

𝜕𝑘

𝜕𝐸

𝜕𝑘

𝜕𝐼

𝜕𝑘

𝜕𝑅
𝜕𝑙

𝜕𝑆

𝜕𝑙

𝜕𝐸

𝜕𝑙

𝜕𝐼
𝜕𝑚

𝜕𝑆

𝜕𝑚

𝜕𝐸

𝜕𝑚

𝜕𝐼
𝜕𝑛

𝜕𝑆

𝜕𝑛

𝜕𝐸

𝜕𝑛

𝜕𝐼

𝜕𝑙

𝜕𝑅
𝜕𝑚

𝜕𝑅
𝜕𝑛

𝜕𝑅 ]
 
 
 
 
 
 

 = [

−𝛽𝐼 − 𝜇 𝜆 −𝛽𝑆          0

𝛽𝐼 −(𝜆 + 𝜇 + 𝛼)      𝛽𝑆         0

0
0

𝛼
0

– (𝜇1 + 𝜇 + 𝛾)
𝛾

0
−𝜇

] …..(12) 
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(i) Disease - free equilibrium point and its Stability – 

For this we have, S = 
b 

 𝜇
, I = 0, then we get, 

J(𝐸0) = 

[
 
 
 
 
 −𝜇 𝜆 −𝛽

b 

 𝜇
                  0

0 −(𝜆 + 𝜇 + 𝛼)      𝛽
b 

 𝜇
                0

0
0

𝛼
0

– (𝜇1 + 𝜇 + 𝛾)
𝛾

0
−𝜇]

 
 
 
 
 

 ……………………………………..……..(13) 

Then the characteristic equation is – det. [J (𝐸0) −𝜆′𝐼4] = 0 

⇒ 
|

|

−𝜇 − 𝜆′ 𝜆 −𝛽
b 

 𝜇
                               0

0 −(𝜆 + 𝜇 + 𝛼) − 𝜆′      𝛽
b 

 𝜇
                              0

0
0

𝛼
0

– (𝜇1 + 𝜇 + 𝛾) − 𝜆′

𝛾
     0

−𝜇 − 𝜆′

|

|
 = 0 

⇒ (−𝜇 − 𝜆′) |

−(𝜆 + 𝜇 + 𝛼) − 𝜆′ 𝛽
b 

 𝜇
0

𝛼 – (𝜇1 + 𝜇 + 𝛾) − 𝜆′ 0

0 𝛾 −𝜇 − 𝜆′

| = 0 

⇒ (𝜇 + 𝜆′)2 [(𝜆 + 𝜇 + 𝛼 + 𝜆′)(𝜇1 + 𝜇 + 𝛾 + 𝜆′) −𝛼𝛽
b 

 𝜇
] = 0 

Either, (𝜇 + 𝜆′)2 = 0 ⇒ 𝜆′
1 = −𝜇 , 𝜆′

2 =  −𝜇  

Or, (𝜆 + 𝜇 + 𝛼 + 𝜆′)(𝜇1 + 𝜇 + 𝛾 + 𝜆′) −𝛼𝛽
b 

 𝜇
 = 0 

⇒ 𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 + 𝜇1𝜆
′ + 𝜇𝜆 + 𝜇2 + 𝛼𝜇 + 𝜇𝜆′ + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 + 𝛾𝜆′ + 𝜆𝜆′ + 𝜇𝜆′ + 𝛼𝜆′ + 𝜆′2 − 𝛼𝛽

b 

 𝜇
= 0 

⇒ 𝜆′2 + 𝜆′(𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼) + (𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 + 𝜇𝜆 + 𝜇2 + 𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 − 𝛼𝛽
b 

 𝜇
) = 0 

Let, 𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼 = 𝑎1 

𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 + 𝜇𝜆 + 𝜇2 + 𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 − 𝛼𝛽
b 

 𝜇
 = 𝑎2  

Then the above equation becomes 𝜆′2 + 𝑎1𝜆
′ + 𝑎2 = 0. 

If it has two negative real roots, then det. [J (𝐸0) −𝜆′𝐼4] = 0, has all four eigenvalues are negative, then the DFE point is locally 

asymptotically stable (by stability criterion). 

 

 

(ii) EE point and its Stability– 

The point is 𝐸∗∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) as 𝑆∗ =  
𝑏

𝜇𝑅0
, 𝐸∗ = 

𝑏

(𝜇+𝛼)
 [1 −

1

𝑅0
], 𝐼∗ = 

𝛼𝑏

(𝜇1+𝜇+𝛾)(𝜇+𝛼)
 [1 −

1

𝑅0
],  

𝑅∗ = 
𝛾𝛼𝑏

𝜇(𝜇1+𝜇+𝛾)(𝜇+𝛼)
[1 −

1

𝑅0
]. Here, all the points of 𝐸∗∗ all are positive, if 1 −

1

𝑅0
> 0 ⇒ 1 > 

1

𝑅0
 ⇒ 𝑅0 > 1.  

Then, 𝐸∗∗ represents an endemic points. 

Then, the Jacobian of endemic equilibrium point is –  

J (𝐸∗∗) = [

−𝛽𝐼∗ − 𝜇 𝜆 −𝛽𝑆∗                   0

𝛽𝐼∗ −(𝜆 + 𝜇 + 𝛼)      𝛽𝑆∗                  0

0
0

𝛼
0

– (𝜇1 + 𝜇 + 𝛾)
𝛾

 0
−𝜇

] 

Since, det. [J (𝐸∗∗) −𝜆′𝐼4] = [

−𝛽𝐼∗ − 𝜇 − 𝜆′ 𝜆 −𝛽𝑆∗                              0

𝛽𝐼∗ −(𝜆 + 𝜇 + 𝛼) − 𝜆′      𝛽𝑆∗                            0

0
0

𝛼
0

– (𝜇1 + 𝜇 + 𝛾) − 𝜆′

𝛾
  0

−𝜇 − 𝜆′

] = 0 
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⇒ (−𝜇 − 𝜆′) |

−𝛽𝐼∗ − 𝜇 − 𝜆′ 𝜆 −𝛽𝑆∗

𝛽𝐼∗ −(𝜆 + 𝜇 + 𝛼) − 𝜆′ 𝛽𝑆∗

0 𝛼 – (𝜇1 + 𝜇 + 𝛾) − 𝜆′
| = 0 

⇒ (−𝜇 − 𝜆′) [(−𝛽𝐼∗ − 𝜇 − 𝜆′){ (𝜆 + 𝜇 + 𝛼 + 𝜆′)(𝜇1 + 𝜇 + 𝛾 + 𝜆′) −  𝛼𝛽𝑆∗}−𝛽𝐼∗{ 𝜆(−𝜇1 − 𝜇 − 𝛾 − 𝜆′) + 𝛼𝛽𝑆∗}] = 0  

Either −𝜇 − 𝜆′ = 0 ⇒ 𝜆′ = −𝜇 

Or, [(−𝛽𝐼∗ − 𝜇 − 𝜆′) { (𝜆 + 𝜇 + 𝛼 + 𝜆′)(𝜇1 + 𝜇 + 𝛾 + 𝜆′) −  𝛼𝛽𝑆∗}−𝛽𝐼∗{ 𝜆(−𝜇1 − 𝜇 − 𝛾 − 𝜆′) + 𝛼𝛽𝑆∗} = 0  

⇒(−𝛽𝐼∗ − 𝜇 − 𝜆′)(𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 + 𝜇1𝜆
′ + 𝜆𝜇 + 𝜇2 + 𝛼𝜇 + 𝜆′𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 + 𝛾𝜆′ + 𝜆𝜆′ + 𝜇𝜆′ + 𝛼𝜆′ + 𝜆′2 −

 𝛼𝛽𝑆∗) −𝛽𝐼∗(−𝜇1𝜆 − 𝜇𝜆 − 𝛾𝜆 − 𝜆𝜆′ +  𝛼𝛽𝑆∗) = 0  

⇒ −𝛽𝐼∗(𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 + 𝜇1𝜆
′ − 𝜇1𝜆 + 𝜇2 + 𝛼𝜇 + 𝜆′𝜇 + 𝜇𝛾 + 𝛼𝛾 + 𝛾𝜆′ + 𝜇𝜆′ + 𝛼𝜆′ + 𝜆′2) + (−𝜇 − 𝜆′)( 𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 +

𝜇1𝜆
′ + 𝜆𝜇 + 𝜇2 + 𝛼𝜇 + 𝜆′𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 + 𝛾𝜆′ + 𝜆𝜆′ + 𝜇𝜆′ + 𝛼𝜆′ + 𝜆′2 −  𝛼𝛽𝑆∗) = 0 

⇒ −𝛽𝐼∗(𝜇1𝜇 + 𝜇1𝛼 + 𝜇2 + 𝛼𝜇 + 𝜇𝛾 + 𝛼𝛾)  − 𝜆′𝛽𝐼∗(𝜇1 + 2𝜇 + 𝛾 + 𝛼) −𝛽𝐼∗𝜆′2 −(𝜇 + 𝜆′)[(𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 +  𝜆𝜇 + 𝜇2 +

𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗) + 𝜆′(𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼) + 𝜆′2] = 0  

⇒ −𝛽𝐼∗(𝜇1𝜇 + 𝜇1𝛼 + 𝜇2 + 𝛼𝜇 + 𝜇𝛾 + 𝛼𝛾)  − 𝜆′𝛽𝐼∗(𝜇1 + 2𝜇 + 𝛾 + 𝛼) −𝛽𝐼∗𝜆′2 −𝜇( 𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 + 𝜆𝜇 + 𝜇2 + 𝛼𝜇 + 𝜆𝛾 +

𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗) −𝜇𝜆′(𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼) − 𝜇𝜆′2 −𝜆′(𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 +  𝜆𝜇 + 𝜇2 + 𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗) −

𝜆′2(𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼) − 𝜆′3 = 0  

⇒ 𝜆′3 + 𝜆′2(𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼 + 𝜇 + 𝛽𝐼∗) + 𝜆′(2𝛽𝐼∗𝜇 + 𝛽𝐼∗𝛾 + 𝛽𝐼∗𝛼 + 𝛽𝐼∗𝜇1 + 2𝜇2 + 𝜇1𝜇 + 𝜇𝛾 + 𝜇𝜆 + 𝜇𝛼 + 𝜆𝜇 + 𝜇2 +

𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗ + 𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼) + [𝛽𝐼∗(𝜇1𝜇 + 𝜇1𝛼 + 𝜇2 + 𝛼𝜇 + 𝜇𝛾 + 𝛼𝛾) + 𝜇(𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼 +  𝜆𝜇 +

𝜇2 + 𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗)] = 0 

Let A = (𝜇1 + 2𝜇 + 𝛾 + 𝜆 + 𝛼 + 𝜇 + 𝛽𝐼∗) = (𝜇1 + 3𝜇 + 𝛾 + 𝜆 + 𝛼 + 𝛽𝐼∗)   

B = (2𝛽𝐼∗𝜇 + 𝛽𝐼∗𝛾 + 𝛽𝐼∗𝛼 + 𝛽𝐼∗𝜇1 + 2𝜇2 + 𝜇1𝜇 + 𝜇𝛾 + 𝜇𝜆 + 𝜇𝛼 + 𝜆𝜇 + 𝜇2 + 𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗ + 𝜇1𝜆 + 𝜇1𝜇 +

𝜇1𝛼)   

=(2𝛽𝐼∗𝜇 + 𝛽𝐼∗𝛾 + 𝛽𝐼∗𝛼 + 𝛽𝐼∗𝜇1 + 3𝜇2 + 𝜇1𝜇 + 2𝜇𝛾 + 2𝜇𝜆 + 2𝜇𝛼 + 𝜆𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗ + 𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼)  

C = 𝛽𝐼∗(𝜇1𝜇 + 𝜇1𝛼 + 𝜇2 + 𝛼𝜇 + 𝜇𝛾 + 𝛼𝛾) + 𝜇( 𝜆𝜇 + 𝜇2 + 𝛼𝜇 + 𝜆𝛾 + 𝜇𝛾 + 𝛼𝛾 −  𝛼𝛽𝑆∗ + 𝜇1𝜆 + 𝜇1𝜇 + 𝜇1𝛼) 

Then, det. [J (𝐸∗∗) −𝜆′𝐼4] becomes 𝜆′3 + 𝐴𝜆′2 + 𝐵𝜆′ + 𝐶 = 0. 

If A and C are positive and AB – C > 0 holds then det. [J (𝐸∗∗) −𝜆′𝐼4] = 0 has all real part are negative and thus 𝐸∗∗ is stable (by 

Routh – Hurwitz Stability Criterion). Hence, 𝐸∗∗ is stable if 𝑅0 > 1. 

VII. Conclusion – 

  

SEIR mathematical model where treatment at the exposed population has been formulated and analyzed over the entire 

population. The model was developed based on the assumption of variable population size. The model shows that the treatment 

at exposed population is very important in controlling and eliminating the disease from the system. Thus, if more and more 

people from the population at latent period go for treatment at the exposed compartment, disease will be reduced with time. The 

DFE point is stable when 𝑅0 ≤ 1, and the EE point is stable when 𝑅0 > 1. Thus, for DFE point when stable, disease disappears 

from the system and for EE point when stable, disease will present in the system. 
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